Empirical Priors for Between-Study Heterogeneity in Bayesian Meta-analysis

Eleanor Pullenayegum

Clin Epi & Biostats, McMaster University

Biostatistics Unit, St Joseph's

Outline

- Bayesian meta-analysis
- Vagueness when there is little data
- Being Informative
- Cochrane Review
- Empirical Priors
- Application to dataset
- Questions for discussion

Meta-analysis

- Meta-analysis: pooling results from similar studies in order to summarize evidence
- Typically, experimental treatment vs. control
- Often use a binary outcome
- Pool results on the OR or RR scale
- For the frequentist, methods include:
 Mantel-Haenszel, Peto, inverse-variance
- Fixed or random effects

Example

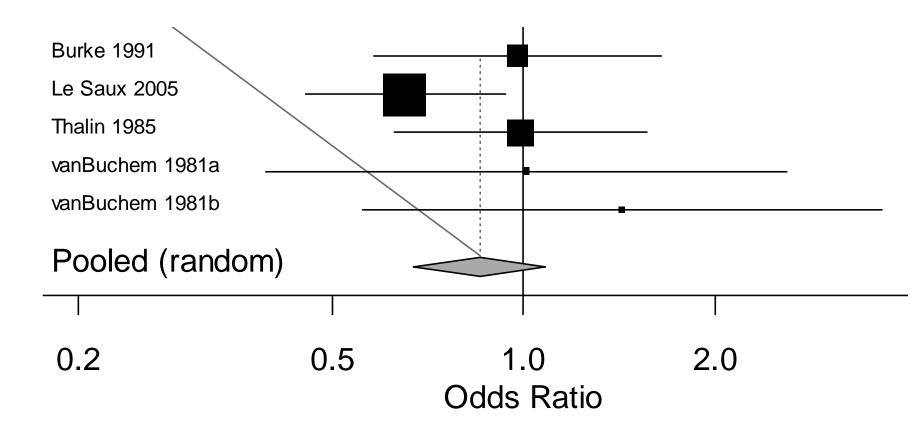
Antibiotics for acute otitis media in children (Review)

Sanders S, Glasziou PP, Del Mar C, Rovers M

Example

- Objective: To assess the effects of antibiotics for children with acute otitis media
- Primary outcome measure: Pain (present/absent) at 24 hours

Study	Antibiotics (n/N)	Placebo (n/N)	OR	95% CI
Burke 1991	53/112	56/117	0.98	(0.58, 1.64)
Le Saux 2005	82/258	106/254	0.65	(0.45, 0.93)
Thalin 1985	58/159	58/158	0.99	(0.63, 1.56)
vanBuchem 1981a	13/47	11/40	1.01	(0.39, 2.59)
vanBuchem 1981b	17/48	10/36	1.43	(0.56, 3.65)



Fixed & Random effects

 Fixed effects model: each study is measuring the same odds ratio

 $\log OR_i \sim N(\theta, sd_i^2)$

 Random effects model: each study measures a slightly different odds ratio, however there is a common underlying odds ratio around which the individual ORs deviate

 $\log OR_i \sim N(\theta_i, sd_i^2)$ $\theta_i \sim N(\theta, \tau^2)$

Uncertainty in $\boldsymbol{\tau}$

- Pooling can be accomplished by taking weighted means
 - For a fixed effects analysis, weights are the inverse of the variance of the within-study variance: 1/sd_i²
 - For a random effects analysis, weights are the inverse of the sum of the within and between study variances: $1/(sd_i^2+\tau^2)$
- When there are few studies in the analysis, τ is measured subject to considerable variability
- Frequentist analyses do not account for this.

Bayesian Methods

Bayesian methods can account for all sources of variability

re_i ~ Bin(NE_i, pe_i) rc_i ~ Bin(NC_i, pc_i) logit(pc_i) = α_i logit(pe_i) = $\alpha_i + \theta_i$ $\alpha_i \sim N(\alpha, v^2)$ $\theta_i \sim N(\theta, \tau^2)$

Put priors on the parameters we're unsure about $(\alpha, \nu, \theta, \tau)$

Potential Advantages of Bayesian meta-analysis

- Accounts for all sources of variability
- Can handle zero events without continuity corrections
- Can make probability statements
 - E.g. Probability that the experimental treatment is better than the control is 0.8

Priors

- Need to put prior distributions on the unknown parameters (α,ν,θ,τ)
 - α is the overall log odds of success in the control groups
 - ν^2 is the between-study variance in the log odds of success in the control groups
 - $\boldsymbol{\theta}$ is the overall log odds ratio
 - τ^2 is the between-study variance in the log odds ratios
- Most popular option is to use vague priors
- Fairly easy to do for α , θ
- For the variance parameters: How vague is vague?

Alternative formulation

To simplify discussion, shall use alternative formulation -> Don't need to worry about distribution of underlying event rates

Standard formulation:

ne_i ~ Bin(NE_i,pe_i) nc_i ~ Bin(NC_i,pc_i) logit(pc_i) = α_i logit(pe_i) = $\alpha_i + \theta_i$ $\alpha_i ~ N(\alpha, \nu^2)$ $\theta_i ~ N(\theta, \tau^2)$ Alternative formulation: $\log OR_i \sim N(\theta_i, sd_i^2)$ $\theta_i \sim N(\theta, \tau^2)$

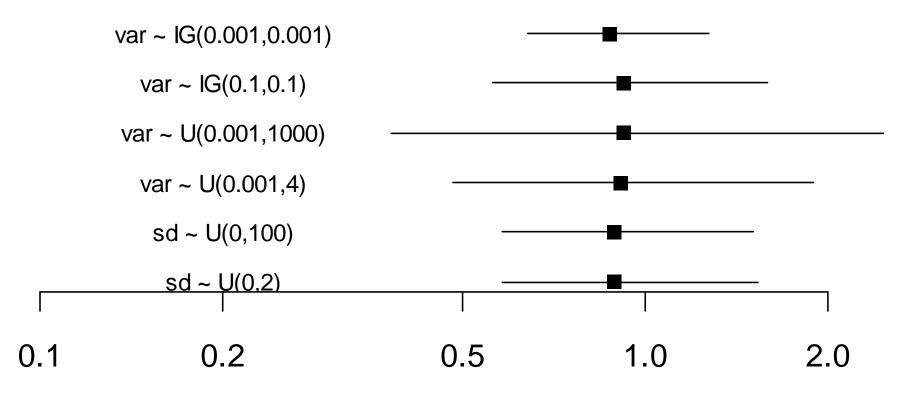
Alternative formulation:

- Cannot account for zero events
- Does not account for variability in estimates of sd_i

"How vague is vague?"

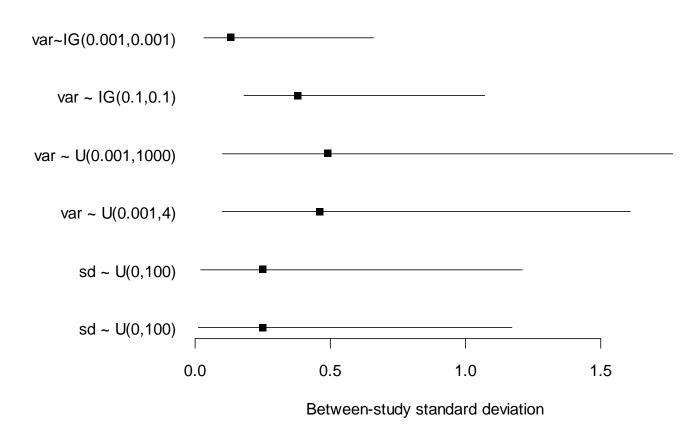
- Lambert et al, 2005
- Used 13 different vague priors
- These gave different results when the number of studies was small
 - Point estimates of pooled ORs were similar
 - 95% Crls were very variable across priors

Pooled OR for a selection of vague priors for τ



Odds Ratio

What's going on?



Why be vague?

- Allow the data to dominate the prior
 - Less subjective
- Not much prior knowledge
- Requires less thought

BUT

- Not much data -> prior still matters
- There is prior knowledge
- Requires a lot of thought to be vague in this case!

What values of τ are reasonable?

 $\theta_i \sim N(\theta, \tau^2)$

 $P(\text{Pooled OR} \times e^{-1.96\tau} < OR_i < \text{Pooled OR} \times e^{1.96\tau} | \theta, \tau) = 0.95$ Ratio of 97.5% OR_i to 2.5% OR_i = $e^{3.92\tau}$

- Usually the range of study ORs would be within an order of magnitude
 - − i.e. e^{3.92τ} <10

– i.e. τ<0.59

• Cf. Smith, 1995

What's reasonable?

- Cf. Spiegelhalter, 2004
- Imagine drawing $\theta_{1},\,\theta_{2}$ at random from the distribution of θ_{i}
- Then, $\theta_1 \theta_2 \sim N(0, 2\tau^2)$ $|\theta_1 - \theta_2| \sim HN(2\tau^2)$
- Median ratio of smaller OR to larger is $e^{1.09\tau}$
- e.g. τ =0.64 leads to a median ratio of 2

What's reasonable?

τ	$exp(3.92\tau)$ (ratio of 97.5 th to 2.5 th percentile)	Median ratio of random pair
0	1	1
0.1	1.48	1.11
0.5	7.1	1.72
1	50.4	2.97
2	2540	8.84

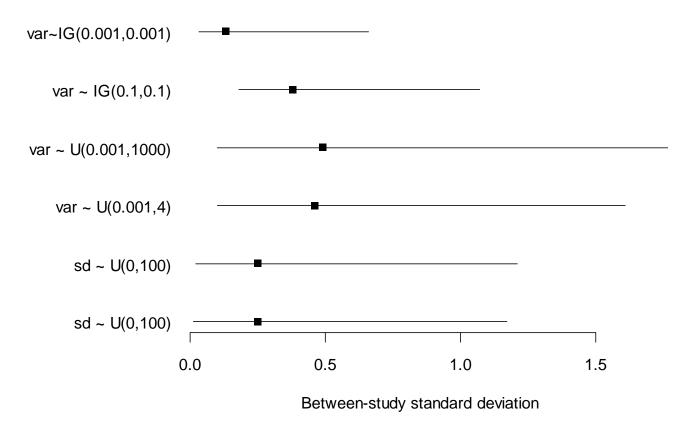
Extract from Spiegelhalter et al, Bayesian Approaches to Clinical Trials & Healthcare evalulation, p. 169

How reasonable were our vague priors?

- τ =0.1 small amount of heterogeneity
- τ=0.5 (median ratio larger:smaller =1.72) reasonable, but quite large
- $\tau=1$ (median ratio of larger:smaller ≈ 3) a lot of heterogeneity
- $\tau=2$ (median ratio of larger:smaller >8) extreme

Prior	Ρ(τ< 2)	Ρ(τ< 1)
$\tau^2 \sim IG(0.001, 0.001)$	0.0077	0.0063
τ ² ~ IG(0.1,0.1)	0.27	0.17
τ ² ~ U(0.001,1000)	0.0040	0.0010
τ ² ~ U(0.001,4)	1	0.25
τ ~ U(0,100)	0.02	0.01
τ ~ U(0,2)	1	0.5

Example: Posterior Distribution of τ



Summary so far

- Bayesian methods can incorporate uncertainty about $\boldsymbol{\tau}$
- Need a prior distribution for $\boldsymbol{\tau}$
- Vague priors supposedly let the data dominate
 - But we don't have much data
 - Different vague priors give different posterior inferences about $\boldsymbol{\tau}$
- As a Bayesian, I should believe my posterior distribution provided that I believe my prior
- I don't believe any of the vague priors!

Informative prior

- We can use mathematical reasoning to argue what is and is not theoretically plausible
- We can use past meta-analyses to establish what is and is not likely

Empirical Evidence

- Propose to describe the distribution of betweenstudy heterogeneity in past meta-analyses
- Use this distribution as a prior distribution for τ in a new meta-analysis
- Should result in better calibration
 - Bayesians are well calibrated if their probability statements are borne out in practice
 - E.g. if, amongst the days for which the Bayesian forecaster says it will rain with probability 0.4, it rains 40% of the time

Cochrane Review

- From the Cochrane Database of Systematic Reviews, extracted all reviews published between Jan 2008 and Jul 31st 2009.
- Reviews were included in the sample if
 - They included data from two are more studies
 - The primary outcome was binary
 - The first forest plot included a pooled result

Cochrane Review

- Only the pooled result from the first forest plot was included.
 - If there was a total result pooled across all subgroups, this was used
 - If pooling was done within subgroups, the first subgroup with pooling was used

Summary of findings

- Search retrieved a total of 942 records
- 314 provided valid data
- Of those excluded:
 - 103 did not include any studies
 - 320 did not pool results for the primary comparison
 - 198 did not have a binary outcome
 - In 4 reviews, all the included studies had either 100% or 0% event rates
 - 3 studies were excluded for other reasons (meta-analysis of cross-over trials, numbers of events/patients not reported)

Fitting Distributions

- Candidate distributions
 - Inverse Gamma
 - Gamma
 - Log-Normal
- Option 1: Maximum Likelihood, ignoring uncertainty in parameters
- Option 2: Incorporate uncertainty in parameters through Bayesian model
- Option 3: Incorporate uncertainty in estimates of τ by including study-level data from each included review

Option 1

• Derive estimate of τ^2 from each individual review through method-of-moments

$$\hat{\tau}^2 = Q - (k-1) / \left(\sum_{i=1}^k w_i - \frac{\sum_{i=1}^k w_i^2}{\sum_{i=1}^k w_i} \right) \text{ if } Q \ge k-1$$

0 if Q < k - 1

- Distribution of τ^2 :
 - Point mass at zero
 - Estimate distributional parameters by maximum likelihood

Option 2

- Use method-of-moments to estimate τ^2
- Point mass at zero
- Use model to express uncertainty about distributional parameters:

$$\begin{aligned} x &= I(\tau_{review}^2 = 0) \\ x &\sim Bernoulli(p) \\ for \tau_{review}^2 > 0: \\ y &= log(\tau_{review}^2) \\ y &\sim N(\mu, \sigma^2) \end{aligned}$$

Option 3

- Use individual-level study results from each review in order to capture uncertainty in estimates of $\boldsymbol{\tau}$
- Useful if want to constrain $\tau > 0$

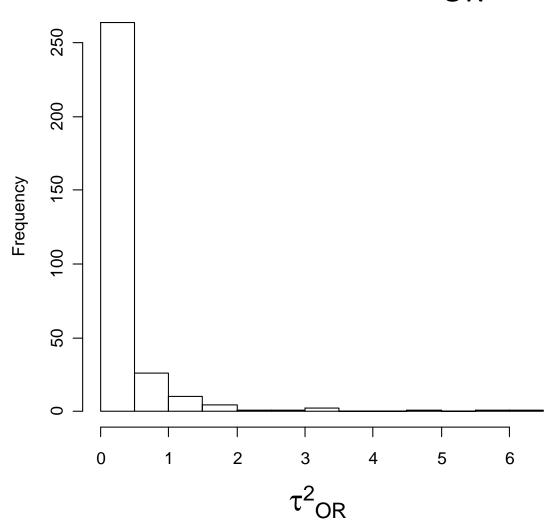
New meta-analysis

Cochrane review data

 $log OR_{i} \sim N(\theta_{i}, sd_{i}^{2})$ $\theta_{i} \sim N(\theta, \tau^{2})$ $\tau^{2} = exp(log tau)$ $log tau \sim N(\mu, \sigma^{2})$ $log OR_{ij}^{review} \sim N(\alpha_{ij}, var_{ij})$ $\alpha_{ij} \sim N(\alpha_j, \tau_j)$ $\tau_j^2 = exp(log tau_j)$ $log tau_j \sim N(\mu, \sigma^2)$

Results

Histogram of methods-of-moments estimates of τ^2_{OR}



Summary Stats: Method-ofmoments estimators

Parameter	Prop=0	1 st quartile	Median	3 rd quartile
Pooled OR		0.56	0.95	1.54
Pooled RR		0.68	0.97	1.30
Pooled log OR		-0.58	-0.05	0.43
Pooled log RR		-0.39	-0.03	0.27
τ^2_{OR}	0.49	0	0.0084	0.25
τ^2_{RR}	0.51	0	0	0.075

Mean $\tau^2_{OR} = 0.27$ Mean $\tau^2_{RR} = 0.11$

Option 1: OR

Range for τ	Observed	Expected counts			
		Inverse Gamma	Gamma	Log-Normal	
		(0.511, 0.031)	(0.65, 1.218)	(-1.563, 1.494)	
(0,0.1]	4	2.13	10.08	3.36	
(0.1, 0.5]	78	98.89	63.31	84.71	
(0.5, 1]	58	29.52	60.55	49.13	
>1	21	27.54	27.07	23.80	
χ^2 goodness-of-fit p-value		< 0.0001	0.036	0.4603	
Kolmogorov-Smirnov p-value		0.0000340	0.364	0.5388	

Option 1: RR

Range for τ	Observed	Expected counts			
		Inverse Gamma (0.416, 0.00616)	Gamma (0.524, 2.217)	Log-Normal (-2.645, 1.710)	
(0,0.1]	22	33.42	23.40	19.26	
(0.1, 0.5]	90	82.82	82.92	98.44	
(0.5, 1]	36	15.98	40.99	25.99	
>1	5	17.70	5.69	9.32	
χ^2 goodness-of-fit p-value		< 0.0001	0.7104	0.073	
Kolmogorov-Smirnov p-value		0.00022	0.1277	0.7329	

Option 2 – Goodness-of-fit

Deviance Information Criterion (DIC) for the three distributions (lower is better)

Distribution	OR	RR
Inverse Gamma	157	-135
Gamma	101	-187
Log-Normal	87	-207

Option 2: Estimated parameters

	Shape (inverse-gamma & gamma); mean (log-Normal)		Rate (inverse gamma & gamma); precision (log-Normal)	
OR	ML	Post. median & 95% CrI	ML	Post. median & 95% CrI
Inverse gamma	0.511	0.51 (0.42, 0.61)	0.031	0.03 (0.023, 0.04)
Gamma	0.65	0.65 (0.53, 0.77)	1.218	1.21 (0.91, 1.56)
Log-Normal	-1.56	-1.56 (-1.80, -1.33)	0.45	0.44 (0.35, 0.55)
RR				
Inverse gamma	0.416	0.41 (0.34, 0.49)	0.0061	0.0061 (0.004,0.0081)
Gamma	0.524	0.52 (0.43, 0.62)	2.217	2.19 (1.61, 2.89)
Log-Normal	-2.645	-2.65 (-2.92, 2.37)	0.34	0.34 (0.27, 0.42)

Option 3: Model fit statistics based on RCT-level data

Odds ratios scale

Distribution	Posterior Median & 95% CrI	DIC
Log-Normal	Mean: -3.16 (-3.84, -2.68)	4706
	Precision: 0.35 (0.20, 0.61)	
Inverse Gamma	Shape: 0.95 (0.67, 1.40)	4716
	Rate: 0.03 (0.01, 0.06)	

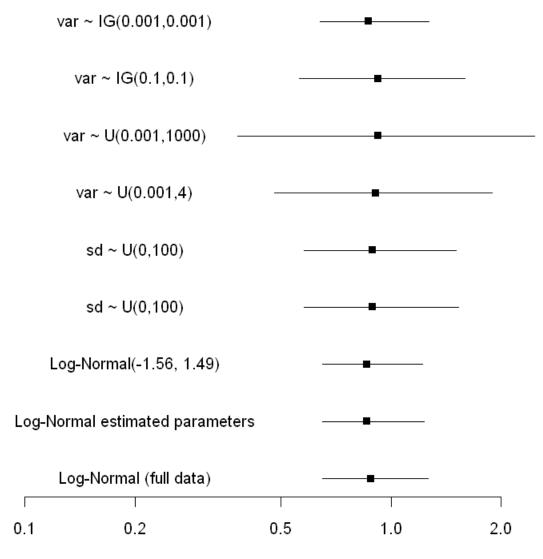
Relative Risk scale

Distribution	Posterior Median & 95% CrI	DIC
Log-Normal	Mean: -4.41 (-5.16, -3.89)	2733
	Precision: 0.32 (0.18, 0.56)	
Inverse Gamma	Shape: 0.87 (0.63, 1.24)	2743
	Rate: 0.0063 (0.0024, 0.014)	

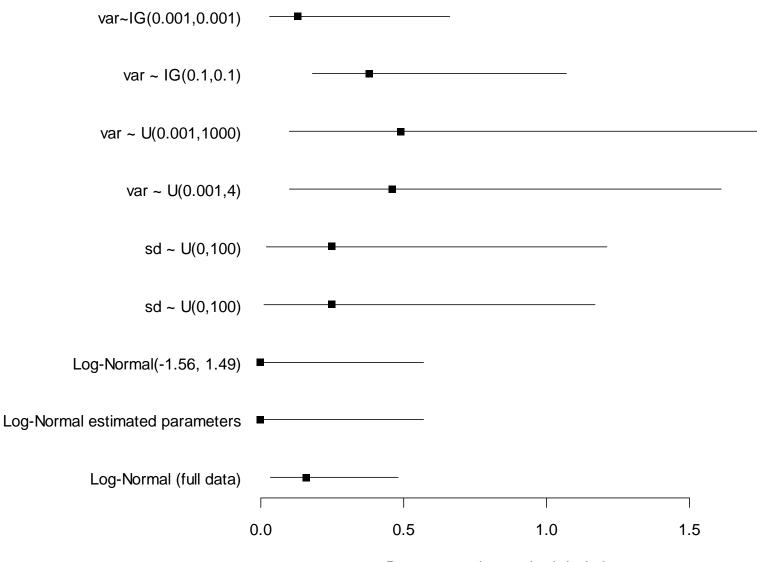
Summary

- Log-Normal fits best in all three approaches
- Less heterogeneity in the RRs than in the ORs

Application to example - OR



Posterior distribution for $\boldsymbol{\tau}$



Between-study standard deviation

Strengths

- Proposed priors describe reasonable beliefs about between-study heterogeneity
- If you do a new meta-analysis using this empirical prior
 - Provided you believe the prior, you should believe the posterior
 - Regardless of how many studies were in your meta-analysis

Limitations

- Have used Cochrane reviews only
- Have used the alternative, less desirable formulation of the Bayesian model
 - Study-level data is log OR and associated variance, not raw numbers of events, non-events
 - Does not account for uncertainty in variance of log ORs
- Have used just one review for illustration impact of priors on results may be different for other examples

Questions

- Does it matter that the data was extracted by just one person?
- Are Cochrane reviews different from other reviews?
- Can heterogeneity be exactly equal to zero?
 i.e. should I have a point mass at 0?
- Priors for pooled OR and heterogeneity assumed independent – does this matter?
- I used a continuity correction for trials with zero events – how much would the results change on using an alternative method?
- Exchangeability?