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Meta-analysis

• Meta-analysis: pooling results from similar 
studies in order to summarize evidence

• Typically, experimental treatment vs. control

• Often use a binary outcome

• Pool results on the OR or RR scale

• For the frequentist, methods include:

– Mantel-Haenszel, Peto, inverse-variance

• Fixed or random effects



Example



Example

Study Antibiotics (n/N) Placebo (n/N) OR 95% CI 

Burke 1991 53/112 56/117 0.98 (0.58, 1.64) 

Le Saux 2005 82/258 106/254 0.65 (0.45, 0.93) 

Thalin 1985 58/159 58/158 0.99 (0.63, 1.56) 

vanBuchem 1981a 13/47 11/40 1.01 (0.39, 2.59) 

vanBuchem 1981b 17/48 10/36 1.43 (0.56, 3.65) 

 

• Objective: To assess the effects of antibiotics 
for children with acute otitis media

• Primary outcome measure: Pain 
(present/absent) at 24 hours
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Fixed & Random effects

• Fixed effects model: each 
study is measuring the same 
odds ratio

• Random effects model: each 
study measures a slightly 
different odds ratio, however 
there is a common underlying 
odds ratio around which the 
individual ORs deviate
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Uncertainty in 

• Pooling can be accomplished by taking weighted 
means

– For a fixed effects analysis, weights are the inverse of the 
variance of the within-study variance: 1/sdi

2

– For a random effects analysis, weights are the inverse of 
the sum of the within and between study variances: 
1/(sdi

2+ 2)

• When there are few studies in the analysis, is 
measured subject to considerable variability

• Frequentist analyses do not account for this.



Bayesian Methods

• Bayesian methods can account for all sources of 
variability
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Potential Advantages of Bayesian 
meta-analysis

• Accounts for all sources of variability

• Can handle zero events without continuity 
corrections

• Can make probability statements
– E.g. Probability that the experimental treatment is 

better than the control is 0.8



Priors

• Need to put prior distributions on the unknown 
parameters ( )

– is the overall log odds of success in the control groups

– is the between-study variance in the log odds of success 
in the control groups

– is the overall log odds ratio

– is the between-study variance in the log odds ratios

• Most popular option is to use vague priors

• Fairly easy to do for , 

• For the variance parameters: How vague is vague?



Alternative formulation
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Alternative formulation:

logOR ~ N( ,sd )

~ N( , )

Alternative formulation:

• Cannot account for zero events
• Does not account for variability in 

estimates of sdi

To simplify discussion, shall use alternative formulation

-> Don’t need to worry about distribution of underlying 

event rates



“How vague is vague?”

• Lambert et al, 2005

• Used 13 different vague priors

• These gave different results when the number 
of studies was small

– Point estimates of pooled ORs were similar

– 95% CrIs were very variable across priors
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What’s going on?
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Why be vague?

• Allow the data to dominate the prior

– Less subjective

• Not much prior knowledge

• Requires less thought

BUT

• Not much data -> prior still matters

• There is prior knowledge

• Requires a lot of thought to be vague in this case!



What values of are reasonable?

• Usually the range of study ORs would be 
within an order of magnitude
– i.e. e3.92 <10

– i.e. <0.59

• Cf. Smith, 1995
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What’s reasonable?

• Cf. Spiegelhalter, 2004

• Imagine drawing 1, 2 at random from the 
distribution of i

• Then, 

• Median ratio of smaller OR to larger is e1.09

• e.g. =0.64 leads to a median ratio of 2
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What’s reasonable?

Extract from Spiegelhalter et al, Bayesian Approaches to Clinical 
Trials & Healthcare evalulation, p. 169

exp(3.92 ) (ratio 
of 97.5th to 2.5th 
percentile) 

Median ratio of 
random pair 

0 1 1 

0.1 1.48 1.11 

0.5 7.1 1.72 

1 50.4 2.97 

2 2540 8.84 
 



How reasonable were our vague 
priors?

• =0.1 small amount of heterogeneity

• =0.5 (median ratio larger:smaller =1.72) reasonable, but 
quite large

• =1 (median ratio of larger:smaller ≈3) a lot of heterogeneity

• =2 (median ratio of larger:smaller >8) extreme

Prior P( <2) P( <1) 
2 ~ IG(0.001,0.001) 0.0077 0.0063 
2 ~ IG(0.1,0.1) 0.27 0.17 
2 ~ U(0.001,1000) 0.0040 0.0010 
2 ~ U(0.001,4) 1 0.25 

 ~ U(0,100) 0.02 0.01 

 ~ U(0,2) 1 0.5 
 



Example: Posterior Distribution of 
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Summary so far

• Bayesian methods can incorporate uncertainty about 

• Need a prior distribution for 

• Vague priors supposedly let the data dominate

– But we don’t have much data

– Different vague priors give different posterior inferences 
about 

• As a Bayesian, I should believe my posterior 
distribution provided that I believe my prior

• I don’t believe any of the vague priors!



Informative prior

• We can use mathematical reasoning to argue 
what is and is not theoretically plausible

• We can use past meta-analyses to establish 
what is and is not likely



Empirical Evidence

• Propose to describe the distribution of between-
study heterogeneity in past meta-analyses

• Use this distribution as a prior distribution for in a 
new meta-analysis

• Should result in better calibration

– Bayesians are well calibrated if their probability statements 
are borne out in practice

– E.g. if, amongst the days for which the Bayesian forecaster 
says it will rain with probability 0.4, it rains 40% of the time



Cochrane Review

• From the Cochrane Database of Systematic 
Reviews, extracted all reviews published 
between Jan 2008 and Jul 31st 2009.

• Reviews were included in the sample if

– They included data from two are more studies

– The primary outcome was binary

– The first forest plot included a pooled result



Cochrane Review

• Only the pooled result from the first forest 
plot was included.

– If there was a total result pooled across all 
subgroups, this was used

– If pooling was done within subgroups, the first 
subgroup with pooling was used



Summary of findings

• Search retrieved a total of 942 records

• 314 provided valid data

• Of those excluded:
– 103 did not include any studies

– 320 did not pool results for the primary comparison

– 198 did not have a binary outcome

– In 4 reviews, all the included studies had either 100% or 
0% event rates

– 3 studies were excluded for other reasons (meta-analysis 
of cross-over trials, numbers of events/patients not 
reported)



Fitting Distributions

• Candidate distributions

– Inverse Gamma

– Gamma

– Log-Normal

• Option 1: Maximum Likelihood, ignoring uncertainty 
in parameters

• Option 2: Incorporate uncertainty in parameters 
through Bayesian model

• Option 3: Incorporate uncertainty in estimates of 
by including study-level data from each included 
review



Option 1

• Derive estimate of 2 from each individual 
review through method-of-moments

• Distribution of 2:
– Point mass at zero

– Estimate distributional parameters by maximum 
likelihood
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Option 2

• Use method-of-moments to estimate 2

• Point mass at zero

• Use model to express uncertainty about 
distributional parameters:
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Option 3

• Use individual-level study results from each review 
in order to capture uncertainty in estimates of 

• Useful if want to constrain >0

review
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Results
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Summary Stats: Method-of-
moments estimators

Parameter Prop=0 1
st
 quartile Median 3

rd
 quartile 

Pooled OR  0.56 0.95 1.54 

Pooled RR  0.68 0.97 1.30 

Pooled log OR  -0.58 -0.05 0.43 

Pooled log RR  -0.39 -0.03 0.27 
2

OR 0.49 0 0.0084 0.25 
2

RR 0.51 0 0 0.075 

 

Mean 2
OR = 0.27

Mean 2
RR = 0.11



Option 1: OR

Expected counts Range for  Observed 

Inverse Gamma 

(0.511, 0.031) 

Gamma 

(0.65, 1.218) 

Log-Normal  

(-1.563, 1.494) 

(0,0.1] 4 2.13 10.08 3.36 

(0.1, 0.5] 78 98.89 63.31 84.71 

(0.5, 1] 58 29.52 60.55 49.13 

>1 21 27.54 27.07 23.80 

 goodness-of-fit p-value < 0.0001 0.036 0.4603 

Kolmogorov-Smirnov p-value 0.0000340 0.364 0.5388 

 



Option 1: RR

Expected counts Range for  Observed 

Inverse Gamma 

(0.416, 0.00616) 

Gamma 

(0.524, 2.217) 

Log-Normal  

(-2.645, 1.710) 

(0,0.1] 22 33.42 23.40 19.26 

(0.1, 0.5] 90 82.82 82.92 98.44 

(0.5, 1] 36 15.98 40.99 25.99 

>1 5 17.70 5.69 9.32 

 goodness-of-fit p-value < 0.0001 0.7104 0.073 

Kolmogorov-Smirnov p-value 0.00022 0.1277 0.7329 

 



Option 2 – Goodness-of-fit

Distribution OR RR 

Inverse Gamma 157 -135 

Gamma 101 -187 

Log-Normal 87 -207 

 

Deviance Information Criterion (DIC) for the 

three distributions (lower is better)



Option 2: Estimated parameters

 Shape (inverse-gamma & 

gamma); mean (log-Normal) 

Rate (inverse gamma & gamma); 

precision (log-Normal) 

OR ML Post. median & 95% CrI ML Post. median & 95% CrI 

Inverse gamma 0.511 0.51 (0.42, 0.61) 0.031 0.03 (0.023, 0.04) 

Gamma 0.65 0.65 (0.53, 0.77) 1.218 1.21 (0.91, 1.56) 

Log-Normal -1.56 -1.56 (-1.80, -1.33) 0.45 0.44 (0.35, 0.55) 

RR     

Inverse gamma 0.416 0.41 (0.34, 0.49) 0.0061 0.0061 (0.004,0.0081) 

Gamma 0.524 0.52 (0.43, 0.62) 2.217 2.19 (1.61, 2.89) 

Log-Normal -2.645 -2.65 (-2.92, 2.37) 0.34 0.34 (0.27, 0.42) 

 



Option 3: Model fit statistics based 
on RCT-level data

Odds ratios scale 

Distribution Posterior Median & 95% CrI DIC 

Log-Normal Mean: -3.16 (-3.84, -2.68) 

Precision: 0.35 (0.20, 0.61) 

4706 

Inverse Gamma Shape: 0.95 (0.67, 1.40) 

Rate: 0.03 (0.01, 0.06) 

4716 

 

Relative Risk scale 

Distribution Posterior Median & 95% CrI DIC 

Log-Normal Mean: -4.41 (-5.16, -3.89) 

Precision: 0.32 (0.18, 0.56) 

2733 

Inverse Gamma Shape: 0.87 (0.63, 1.24) 

Rate:  0.0063 (0.0024, 0.014) 

2743 

 



Summary

• Log-Normal fits best in all three approaches

• Less heterogeneity in the RRs than in the ORs



Application to example - OR
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Strengths

• Proposed priors describe reasonable beliefs 
about between-study heterogeneity

• If you do a new meta-analysis using this 
empirical prior

– Provided you believe the prior, you should believe 
the posterior

– Regardless of how many studies were in your 
meta-analysis



Limitations

• Have used Cochrane reviews only

• Have used the alternative, less desirable 
formulation of the Bayesian model

– Study-level data is log OR and associated variance, 
not raw numbers of events, non-events

– Does not account for uncertainty in variance of log 
ORs

• Have used just one review for illustration –
impact of priors on results may be different 
for other examples



Questions

• Does it matter that the data was extracted by just 
one person?

• Are Cochrane reviews different from other reviews?

• Can heterogeneity be exactly equal to zero?

– i.e. should I have a point mass at 0?

• Priors for pooled OR and heterogeneity assumed 
independent – does this matter?

• I used a continuity correction for trials with zero 
events – how much would the results change on 
using an alternative method?

• Exchangeability?


